
Mobile Peer-to-peer systems: Overview, issues and potential usages

Introduction

Mobile devices are now everywhere. These personal devices are used for
interpersonal communications (phone call, video call, SMS) but they are also
increasingly used to access the internet or to retrieve information from
connected applications while on the go. In several poor countries, mobile Internet
access even surpasses fixed internet access. Meanwhile, the mobile internet
world is a much more controlled and constrained environment. Limitations come
from the capacity of the terminal, from the connectivity technologies available on
the device or from restriction policies applied by mobile network operators.
Nevertheless, efforts are made to use mobile IP network connectivity at its full
capabilities, and to allow mobile terminals to share contents they are now able to
produce: contextual information, multimedia documents… In order to circumvent
the constraints imposed by mobile network operators, one can imagine
developing an alternative to centralized network models in order to give the user
the possibility to access a new range of services. The best way to do it is to set
up a peer-to-peer platform.

 In this article, we will try to figure out how the principles of peer-to-peer
networks apply to mobile networks, and how they can be used to serve mobile
communication or contextual applications. First, we will present peer-to-peer
networks from a general point of view. Then, we will see how the concepts of
peer-to-peer networks can be used in two kinds of mobile networks: mobile ad-
hoc networks and mobile operated cellular networks. After that, we will focus on
some of the problematic related to the use of peer-to-peer network technologies
in mobile cellular networks. Finally, we will give some examples showing how
peer-to-peer technologies can be used in mobile applications.

General presentation of peer to peer networks

For many people, peer-to-peer is a synonym for illegal file sharing. In the context
of the workshop, peer-to-peer can be more accurately described as a
collaborative form of content production, be it an article on the wiki, a set of open
source specifications for electronic components or a multimedia content. But
peer-to-peer can be given a rather technological definition.

From a computer science perspective, as stated in Wikipedia, “A peer-to-peer
computer network is a network that relies on computing power at the edges
(ends) of a connection rather than in the network itself. Peer-to-peer networks
are used for sharing content like audio, video, data or anything in digital format.
Peer-to-peer network can also mean grid computing.”

According to this definition, all the nodes are equal in a peer-to-peer network, in
opposition to the client-server model. All the resources are spread in the network
and shared among the nodes participating in the network: computing power,
bandwidth or storage capacity. This provides robustness to the system because

the failure of one node in the network does not harm the collaboration of the
others, whereas a server crash is dramatic in a client-server model.

Moreover, providing a service in a peer-to-peer network is less costly than in a
client server model. Indeed, when you want to propose a service to a broad
number of users in a client-server fashion, you have to design your server in
order to handle the requests for service from your targeted audience. You may
require a high bandwidth, a lot of processing power and a significant storage
capacity to allow every possible user to access it, while in a peer-to-peer network
the cost is shared by all the nodes in the network.

Nevertheless peer-to-peer networks also have some drawbacks. It can be tedious
to locate resources in a peer-to-peer network, whereas the resource locating
mechanism is fairly simple in a client-server model as all the information is
centralized. This is the reason why some peer-to-peer applications use servers to
discover resources in the network (typically, Napster (1)). This is one of the
characteristics that can be used to categorize peer-to-peer networks.

Categorization of peer-to-peer networks

Peer-to-peer networks have been built using different kinds of architectures and
internal logics. Those systems were designed in order to adapt to the specificities
of the networks on top of which they operate and to the characteristics of the
applications using them. For instance, some applications like real time
communications require being able to identify a single node quickly in a large
network, while others such as file sharing focus on locating the same resource in
different end nodes in order to retrieve the resource more reliably. Thus peer-to-
peer applications and overlays adopted a wide range of approaches to solve the
specific issues they want to tackle, and they can be categorized according to
these approaches.

Several criteria can be used to characterize peer-to-peer networks. First, we can
discriminate peer-to-peer systems according to the organization of the nodes.
Sure, every node should be able to connect to any other node in a pure, peer-to-
peer approach. Meanwhile, in order to allow the operation of the network when it
is quite large, several networks adopt organization principles. In those networks,
nodes are organized together in order to limit the number of connections they
have to maintain and to keep message routing feasible in the network. These
organization principles often aim at optimizing the network for application-
specific purposes.

Besides, network can be discriminated according to the role nodes can play in the
network. Ideally, every node is strictly equivalent to the others, but in some
networks, disparities appear because some nodes have more resources available,
or on the contrary are not capable enough to operate on the network. In order to
address this kind of issues, some peer-to-peer networks such as JXTA (2) or
Skype(3) have introduced the concept of supernodes. These nodes are specific
nodes that hold more resources than most of the other peers. Least capable
nodes can delegate some specific operations to these peers. They can also play a

more important role in routing operations as they are often more stable in the
peer-to-peer network, i.e. present for a longer period of time.

At last, the resource discovery mechanism adopted in the peer-to-peer network is
an important criterion, because the way nodes locate and access resources
shared within the network is what ties these networks together. This is the main
problem to address when moving an application from a client-server model to a
peer-to-peer model, and efficient delivery methods are a key to the operation of
these decentralized systems.

These three criteria help defining five classes of peer-to-peer networks (4):
Directory networks, Flooding networks, Distributed Hash Table networks,
Epidemic networks and Social networks.

Directory networks (Picture: Directory.jpg) are peer-to-peer networks where
connected peers register the resources they share on a directory. This directory
can be centralized, or distributed among a set of directory servers or supernodes.
In those network, resource discovery is performed by interrogating the directory,
which can also be used to perform bootstrapping operations for peers willing to
connect to the network. This kind of peer-to-peer network is the closest from the
classical client-server model, and was mainly used in Napster, Emule (5) or
Edonkey (6), which are quite old peer-to-peer applications. The centralization of
the directory is a weakness in the system, which armed the operation of Napster
when it was asked to stop its operation. Meanwhile, these systems allowed peer-
to-peer networks to gain popularity and soon their weaknesses were addressed
by flooding networks.

Flooding networks (Picture: Flooding.jpg) appeared to bypass the relative
centralization of directory networks. In these networks, resource discovery is
performed by sending messages to every neighboring peer. When a node
receives such a discovery message, it looks up in its own resources if it has a
match, and if not, it relays this message to its own neighbors. When a node has a
resource matching the request, it sends back an answer to the peer that relayed
the message, and the answer makes its way to the originator of the request.
From this description, it can be intuitively understood that this process generates
a lot of messages on the network. Besides, a given node can receive the same
request from multiple neighbors. This drawback is the main issue of flooding
networks. Indeed, these networks are not efficient because there is a big
signaling overhead, i.e. the number of messages sent on the network for
discovery and network management is too high compared to the useful traffic.
Despite this drawback, flooding networks have been used in the first versions of
the Gnutella (7) network, and proved being successful in the absence of more
efficient alternatives.

Distributed hash table networks are now among the most efficient peer-to-peer
networks. In these networks, peers are logically organized. This organization
follows a resource distribution algorithm based on global resource identifiers.
These identifiers are computed using hashing functions. The nodes in the
network organize themselves on a logical ring, where their location is given by

their hash identifier. When a resource is shared on the network, its localization is
under the responsibility of the node whose hash is the closest to the resource’s
hash identifier. When a node wants to locate this resource, it sends a message on
the network to the responsible node using a logical routing algorithm. The
algorithms behind these networks are less simple than in the two other kinds of
network, but the use of a logical organization in the network makes discovery
operations faster, and the network can operate in a much more efficient way
while the nodes don’t have to maintain as many connections to neighboring
nodes as in flooding systems. Besides, these network can use the concept of
supernodes by setting up parallel logical networks only gathering those more
powerful nodes to take in charge specific operations, thus using the most
interesting concept of directory networks. Most of the research work done in the
peer-to-peer area is done on these networks, and they are adopted in research
projects such as Chord (8) or Pastry (9), standardized peer-to-peer
communication systems or new applications such as Azureus (10).

Epidemic networks have appeared recently to propose another approach to the
problems solved by distributed hash table networks. Indeed, epidemic networks
tend to adopt a random approach to build a peer-to-peer network overlay. In
these networks, peers tend to organize themselves in order to maximize the use
of a given resource (Bandwidth, computing power…). Peers in the network
exchange information about this resource with their neighbors of course, but also
with other nodes participating in the network selected randomly. This random
selection aims at avoiding deadlocks or performance degradation due to rapid,
dynamic changes in the network. These networks are not implemented in many
systems, but promising researches are made within the framework of the Tribbler
(11) application or of the BuddyCast (12) project.

Social network are peer-to-peer networks where peers connect according to a
previous knowledge of the other peers. Indeed, those peers connect because
they know each other, and want to share resources among their community.
Those networks may become more and more popular in the future because of the
level of trust between the peers. This trust is a good way to tackle peer-to-peer
network monitoring from copyright owners or people who want to reduce the
sharing of illegal downloads on peer-to-peer systems. Nevertheless, these
networks may result in a rather inefficient sharing of resources because of the
size of the communities where resources are shared.

Applying peer-to-peer concepts in mobile networks.

The huge improvements of mobile networks in term of bandwidth and the new
capabilities of mobile devices such as personal digital assistants or mobile
phones raised some interests in order to develop peer-to-peer applications for
mobile devices. In our view, mobile peer-to-peer systems are systems where
mobile devices can collaborate together and with fixed devices without the
intervention of a central server. These systems can either connect together
spontaneously in an ad-hoc fashion, or use telecom operator’s mobile networks
to connect to peer-to-peer systems on which they may collaborate with fixed
peers.

Mobile Ad-Hoc Networks or MANETs are spontaneous networks established
between wireless devices without any router intervention. These networks do not
organize according to a predefined topology, and they may be set up for a quite
short period of time. These networks may be standalone, or connected to a larger
network if one device can share its connection to such a network. The
spontaneous networks established between Bluetooth devices are perfect
examples of mobile ad-hoc networks. In these networks, the routing of packets
must be done by the end node himself. This raises a problem if two nodes must
communicate indirectly through multiple hosts. A large number of researches
have been made to address this problem, and two kinds of protocols have been
designed for mobile ad-hoc networks. In networks using proactive routing
protocols, every host in the network keeps track of the routes to reach every
other host in the network. As one may expect, proactive routing is not scalable in
networks that are by definition unstable. Using distance vector routing would
lead to slow convergence of the routing algorithm after a network change, and
link state routing would require a lot of calculations in the hosts every time a
change in the network is detected i.e. often according to the nature of ad-hoc
networks. The reactive routing protocols are much more scalable. In this
approach, a route is established only when needed. This may slow down the
establishment of a connection but hosts don’t need to handle the management of
any routing table.

Those networks are interesting in many regards, but the scope of these networks
is quite narrow. Indeed, MANETs are at most citywide networks, while one may
want to cooperate with peers who are farther than that. Mobile collaboration to
peer-to-peer networks using telecom operator’s 2G or 3G data networks offers
the possibility to collaborate in larger networks. This kind of application using
cellular data networks has benefited from the development of UMTS or EDGE
networks which now cover a larger area in most countries where those networks
are operated, and from the evolution of the pricing model for these connections,
which are now affordable. Flat rate offers even reach the market in countries
where the competition between mobile operators is strong. Besides, mobile
devices now have enough storage capacity and computing power to participate
in peer-to-peer networks, and they even have cameras and microphone that
allow them to produce and edit multimedia content that can be shared on those
networks. But there are some specific issues to tackle in order to collaborate to
peer-to-peer networks using GPRS or UMTS IP connectivity.

Most of these issues are related to the structure of mobile cellular networks and
to network management policies adopted by most telecom operators. First of all,
when we consider the architecture of mobile cellular networks, UMTS, HSDPA or
GPRS, we can observe that those networks have a pyramidal structure. On the
schema (Picture: GPRS Architecture.jpg) you can see below, mobile devices are
connected to either a node-B or a base station (BTS), but the data takes the form
of a regular IP datagram on the interface between the SGSN and the GGSN. This
has an influence because the traffic and signaling can’t take shortcuts when a
mobile peer tries to connect to a peer that is under the responsibility of the same
node-B or BTS. Besides, in such networks, mobile peers don’t have the possibility

to broadcast messages on the network, so this kind of messages can’t be used
for bootstrapping or discovery operations. In mobile networks, the possibility for a
given mobile to establish a data connection to an IP network is a costly resource
for mobile network operators, which restrict the use of some protocols or
transport methods on their networks. To tackle these limitations, first the peer-to-
peer systems have to be efficient and to avoid sending too many discovery or
network maintenance messages on the network in order to reduce its footprint.
Thus, the discovery mechanism and the architecture of the peer-to-peer network
have to be adapted to this constraint. Besides, in order to maintain its
reachability in networks where network address translation is often done in a
very ephemeral way, mobile peers have to refresh regularly their connection to
their neighbors in order that they know how to reach them. At last, even if mobile
devices are more capable than a few years ago, they are still less powerful than
fixed workstations who may participate in the same peer-to-peer systems. For
instance, the operation of these mobile peers on the peer-to-peer network has a
power cost, and reduce the battery life of these devices through the intensive
use of data connections.

The use of the concept of supernode is a good way to tackle these different
issues. Indeed, in fixed-mobile peer-to-peer networks, mobile peers could
collaborate with a fixed peer for tedious operations such as the discovery of
resources within the network or maintaining the connectivity of the mobile peer
through the operator’s network address translation system. In case the mobile
operator restricts the use of some protocols, the fixed peer can also take in
charge the network protocol translation operations. This way, all the operations
that are made difficult by the structure of the mobile data network or by
management policies are done by the fixed peers. Those peers then provide the
mobile peer with the capability to fully interact with the other peers in the
network. They should be selected according to an automatic mechanism, based
on their stability in the network or on the amount of available resources they
share. As we have seen before, this supernode concept is available on both
centralized and distributed hash table networks. Given the less centralized nature
of distributed hash table networks, this kind of system is particularly adapted to
the implementation of peer-to-peer systems in a mobile cellular data network
environment.

Among the different experimentations related to mobile peer-to-peer systems,
JXME is particularly interesting. JXME (13) stands for JXTA Mobile Edition. It is a
side project of JXTA, an open source peer-to-peer framework sponsored by Sun
which implements a broad set of discovery and network management
mechanisms to set up large peer-to-peer systems. JXME takes advantage of the
protocols designed by the JXTA community to set up a virtual network layer on
top of GPRS or UMTS network, using the ability of mobile devices to use the
TCP/IP protocol stack with small modifications. Two versions of JXME have been
developed. The first version is known as the proxied version because mobile JXME
peers had to use a fixed relay peer to access the services of the JXTA network.
The relay, which had to be configured manually, acted on behalf of the mobile
peer to forward queries on the network and to trim received advertisements. The

development of the first version of JXME has been stopped when the definition of
JXTA 2.0 protocol stack has been published. Now, the JXME community tries to
develop a proxyless version of the JXME platform. This platform will be
compatible with fixed hosts running JXTA 2.0. Mobile hosts running the second
version of JXME are expected to support the reception of messages in binary
format as well as in XML format, as JXME will incorporate an XML parser. Besides,
they should not use any statically-configured relay to perform operations on the
JXTA network, and thus they should be able to propagate their advertisements
alone. This project is very promising but lacks being used in a real world
application. Nevertheless its use of the supernode concept and its adoption of
java as a programming language make it a good project to experiment mobile
and hybrid peer-to-peer systems.

Applications of mobile peer-to-peer systems

In the last few years, several developers have implemented mobile clients to
popular peer-to-peer file exchange systems such as Gnutella or Bittorrent (14).
These clients have not been really successful because they don’t make an
efficient use of the network connectivity, resulting in high network consumption.
But peer-to-peer technologies can be used in a much more clever way to serve
typically mobile usages.

First, peer-to-peer systems can be used to set up real-time collaborative
applications. Communication can either be the main purpose of these
applications, like in Skype, or an enabler serving another purpose. For instance,
mobile peer-to-peer systems may be used for multiplayer gaming in order to
allow players involved in the same game to exchange information together on
their positioning and actions. In those applications, the use of peer-to-peer
systems compared to a classical client-server approach significantly reduces the
load on the server, and also helps reducing the message transmission delay,
which is critical in real-time collaboration applications. For those applications,
peer-to-peer systems prove being more scalable as they adapt to the number of
connected peers by design.

Besides, peer-to-peer systems can also be used by mobile devices to share the
content they are able to produce with the others. Indeed, mobiles can now be
considered as multimedia content production endpoints because they have a
camera and microphone. Besides, those devices contain a lot of personal
multimedia content (personal pictures, music…) that a user may want to share
with its community. At last, these devices can also broadcast live audio and video
contents. On the internet, a range of services such as Qik (15) provide users with
the ability to stream media to their community, but these services are
centralized. Those services could be proposed in a peer-to-peer fashion, which
would make it a pure software service, while centralized content sharing
platforms require maintaining an infrastructure to store the content or to give
access to the mobile broadcasting the content. Such peer-to-peer systems are
called application layer multicast services because they mock up the functioning
of multicast networks to spread content among peers.

Mobiles can also be used as contextual information sources. This information
comprises location of course, but also local usage of the device (on a phone call,
on mute…), agenda or list of contacts in the phone book. This information may be
used in a broad range of contextual services, form social platform to community
local information platforms. The use of this information raises privacy and
security concerns, but peer-to-peer solves most of the issues raised by the
upload of this information on a centralized platform. Indeed, if the information is
not shared using a centralized platform, then nobody is able to gather global
information by monitoring the service on a central point, and user keep control
on their contextual information.

Such principles also apply to more static personal information. As most users
have a special relationship to their device, and don’t share it with other people
contrarily to a fixed computer, we can see these devices as personal markers,
holding information about their user. Thus, mobile devices can be seen as
personal data repositories on which user have a full control on what they want to
share with others. Applications allowing sharing such information already exist in
both the fixed and mobile world, with projects like Opera Unite (16) or Nokia’s
Mobile web server (17), but these initiatives rely on services provided by either
Nokia or Opera in order to locate the user. Those services could benefit from
peer-to-peer systems as this would decentralize the discovery service. This way,
those services would not rely on a small set of central nodes to operate correctly.
Besides, those services could be used as data backend for social network
services. Thus, all the data shared on these services would be located on a user
premise, and thus it would be under full control of the user. This approach of
peer-to-peer systems goes against the global cloud computing trend, where all
the data is moved to servers in the network, and decentralized systems tend to
give an original answer to most concerns related to data portability and user
privacy on those cloud services.

Conclusion

In this article, we have presented peer-to-peer systems from a technical point of
view, and we explained how they could apply to mobile networks. Although only
few mobile applications use these concepts, the potential of mobile peer-to-peer
allows us to envision a broad range of applications taking advantage of the
decentralized nature of these networks to propose social services. Besides, peer-
to-peer systems could give a technically interesting alternative to build social
network services on which data are kept under the full control and responsibility
of the user.

References

(1) Napster: http://www.napster.com/

(2) JXTA: https://jxta.dev.java.net/

(3) Skype: http://www.skype.com/

http://www.skype.com/
http://www.napster.com/

(4) Pair-à-Pair: Architectures et Services, Fabrice le Fessant (in french) http://
www.forumatena.org/presentations/FabriceLeFessant.pdf

(5) Emule: http://www.emule-project.net/

(6) Edonkey: http://en.wikipedia.org/wiki/EDonkey_network

(7) Gnutella: http://www.the-gdf.org/

(8) Chord: http://pdos.csail.mit.edu/chord/

(9) Pastry: http://research.microsoft.com/en-us/um/people/antr/Pastry/

(10)Azureus: http://azureus.sourceforge.net/

(11)Tribbler: http://www.tribler.org/

(12)Buddycast: http://www.jet.net/buddycast/

(13)JXME (JXTA for J2ME): https://jxta-jxme.dev.java.net/

(14)Bittorrent: http://www.bittorrent.com/

(15)Qik: http://www.qik.com/

(16)Opera Unite: http://unite.opera.com/

(17)Nokia Mobile web server: http://opensource.nokia.com/projects/mobile-
web-server/

http://opensource.nokia.com/projects/mobile-web-server/
http://opensource.nokia.com/projects/mobile-web-server/
http://unite.opera.com/
http://www.qik.com/
http://www.bittorrent.com/
https://jxta-jxme.dev.java.net/
http://www.jet.net/buddycast/
http://www.tribler.org/
http://azureus.sourceforge.net/
http://research.microsoft.com/en-us/um/people/antr/Pastry/
http://pdos.csail.mit.edu/chord/
http://www.the-gdf.org/
http://en.wikipedia.org/wiki/EDonkey_network
http://www.emule-project.net/
http://www.forumatena.org/presentations/FabriceLeFessant.pdf
http://www.forumatena.org/presentations/FabriceLeFessant.pdf

